The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091180 Primes of the form 3*p - 2 such that p is a prime. 32
 7, 13, 19, 31, 37, 67, 109, 127, 139, 157, 181, 199, 211, 307, 337, 379, 409, 487, 499, 541, 571, 577, 631, 751, 769, 787, 811, 829, 877, 919, 937, 991, 1009, 1039, 1117, 1201, 1291, 1297, 1327, 1381, 1399, 1459, 1471, 1567, 1621, 1669, 1759, 1777, 1801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Mother primes of order 1. - Artur Jasinski, Dec 12 2007 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..10000 FORMULA a(n) = 3*A088878(n)-2. EXAMPLE From K. D. Bajpai, Jun 20 2015: (Start) a(4) = 31: 3*11 - 2 = 31; A088878(4) = 11. a(6) = 67: 3*23 - 2 = 67; A088878(6) = 23. (End) MAPLE A091180:= n-> (3*ithprime(n)-2): select(isprime, [seq((A091180(n), n=1..100))]); # K. D. Bajpai, Jun 20 2015 MATHEMATICA n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *) Select[Table[3*Prime[n] - 2, {n, 1000}], PrimeQ] (* K. D. Bajpai, Jun 20 2015 *) PROG (PARI) forprime(p = 1, 1000, k =( 3*p -2); if ( isprime(k), print1(k, ", "))); \\ K. D. Bajpai, Jun 20 2015 (Magma) [ k: p in PrimesUpTo(1000) | IsPrime(k) where k is (3*p-2) ]; // K. D. Bajpai, Jun 20 2015 CROSSREFS Cf. A088878, A091179, A091181. Cf. A136020. Sequence in context: A081765 A257002 A216567 * A272381 A242190 A053458 Adjacent sequences: A091177 A091178 A091179 * A091181 A091182 A091183 KEYWORD nonn,easy AUTHOR Ray Chandler, Dec 27 2003 EXTENSIONS Name clarified by Jinyuan Wang, Aug 06 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 18:02 EST 2024. Contains 370498 sequences. (Running on oeis4.)