login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091055 Expansion of x*(1-2*x)/((1-x)*(1+2*x)*(1-6*x)). 3
0, 1, 3, 23, 127, 783, 4655, 28015, 167919, 1007855, 6046447, 36280047, 217677551, 1306070767, 7836413679, 47018503919, 282110979823, 1692665966319, 10155995623151, 60935974088431, 365615843831535, 2193695064387311 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of walks of length n between adjacent vertices of the Johnson graph J(5,2).

6^n = A091054(n) + 6*a(n) + 3*4*A091056(n).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Johnson Graph

Index entries for linear recurrences with constant coefficients, signature (5,8,-12).

FORMULA

a(n) = (3*6^n - 5*(-2)^n + 2)/30.

E.g.f.: (3*exp(6*x) - 5*exp(-2*x) + 2*exp(x))/30. - G. C. Greubel, Dec 27 2019

MAPLE

seq( (3*6^n -5*(-2)^n +2)/30, n=0..30); # G. C. Greubel, Dec 27 2019

MATHEMATICA

Table[(3*6^n -5*(-2)^n +2)/30, {n, 0, 30}] (* G. C. Greubel, Dec 27 2019 *)

PROG

(PARI) vector(31, n, (3*6^(n-1) -5*(-2)^(n-1) +2)/30) \\ G. C. Greubel, Dec 27 2019

(MAGMA) [(3*6^n -5*(-2)^n +2)/30: n in [0..30]]; // G. C. Greubel, Dec 27 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 25); [0] cat  Coefficients(R!( x*(1-2*x)/((1-x)*(1+2*x)*(1-6*x)))); // Marius A. Burtea, Dec 30 2019

(Sage) [(3*6^n -5*(-2)^n +2)/30 for n in (0..30)] # G. C. Greubel, Dec 27 2019

(GAP) List([0..30], n-> (3*6^n -5*(-2)^n +2)/30); # G. C. Greubel, Dec 27 2019

CROSSREFS

Cf. A091054, A091056.

Sequence in context: A267656 A122883 A196424 * A154648 A031970 A196881

Adjacent sequences:  A091052 A091053 A091054 * A091056 A091057 A091058

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Dec 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)