OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Johnson Graph
Index entries for linear recurrences with constant coefficients, signature (5,8,-12).
FORMULA
a(n) = (3*6^n - 5*(-2)^n + 2)/30.
E.g.f.: (3*exp(6*x) - 5*exp(-2*x) + 2*exp(x))/30. - G. C. Greubel, Dec 27 2019
MAPLE
seq( (3*6^n -5*(-2)^n +2)/30, n=0..30); # G. C. Greubel, Dec 27 2019
MATHEMATICA
Table[(3*6^n -5*(-2)^n +2)/30, {n, 0, 30}] (* G. C. Greubel, Dec 27 2019 *)
PROG
(PARI) vector(31, n, (3*6^(n-1) -5*(-2)^(n-1) +2)/30) \\ G. C. Greubel, Dec 27 2019
(Magma) [(3*6^n -5*(-2)^n +2)/30: n in [0..30]]; // G. C. Greubel, Dec 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!( x*(1-2*x)/((1-x)*(1+2*x)*(1-6*x)))); // Marius A. Burtea, Dec 30 2019
(Sage) [(3*6^n -5*(-2)^n +2)/30 for n in (0..30)] # G. C. Greubel, Dec 27 2019
(GAP) List([0..30], n-> (3*6^n -5*(-2)^n +2)/30); # G. C. Greubel, Dec 27 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 17 2003
STATUS
approved