login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091055
Expansion of x*(1-2*x)/((1-x)*(1+2*x)*(1-6*x)).
3
0, 1, 3, 23, 127, 783, 4655, 28015, 167919, 1007855, 6046447, 36280047, 217677551, 1306070767, 7836413679, 47018503919, 282110979823, 1692665966319, 10155995623151, 60935974088431, 365615843831535, 2193695064387311
OFFSET
0,3
COMMENTS
Number of walks of length n between adjacent vertices of the Johnson graph J(5,2).
6^n = A091054(n) + 6*a(n) + 3*4*A091056(n).
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph
FORMULA
a(n) = (3*6^n - 5*(-2)^n + 2)/30.
E.g.f.: (3*exp(6*x) - 5*exp(-2*x) + 2*exp(x))/30. - G. C. Greubel, Dec 27 2019
MAPLE
seq( (3*6^n -5*(-2)^n +2)/30, n=0..30); # G. C. Greubel, Dec 27 2019
MATHEMATICA
Table[(3*6^n -5*(-2)^n +2)/30, {n, 0, 30}] (* G. C. Greubel, Dec 27 2019 *)
PROG
(PARI) vector(31, n, (3*6^(n-1) -5*(-2)^(n-1) +2)/30) \\ G. C. Greubel, Dec 27 2019
(Magma) [(3*6^n -5*(-2)^n +2)/30: n in [0..30]]; // G. C. Greubel, Dec 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!( x*(1-2*x)/((1-x)*(1+2*x)*(1-6*x)))); // Marius A. Burtea, Dec 30 2019
(Sage) [(3*6^n -5*(-2)^n +2)/30 for n in (0..30)] # G. C. Greubel, Dec 27 2019
(GAP) List([0..30], n-> (3*6^n -5*(-2)^n +2)/30); # G. C. Greubel, Dec 27 2019
CROSSREFS
Sequence in context: A267656 A122883 A196424 * A154648 A031970 A196881
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 17 2003
STATUS
approved