OFFSET
0,3
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Johnson Graph
Index entries for linear recurrences with constant coefficients, signature (5,8,-12).
FORMULA
a(n) = (6^n + 5*(-2)^n + 4)/10.
a(n) = 5*a(n-1) + 8*a(n-2) - 12*a(n-3) for n>2. - Colin Barker, Dec 26 2019
E.g.f.: (exp(6*x) + 5*exp(-2*x) + 4*exp(x))/10. - G. C. Greubel, Dec 27 2019
MAPLE
seq( (6^n +5*(-2)^n +4)/10, n=0..30); # G. C. Greubel, Dec 27 2019
MATHEMATICA
Table[(6^n +5*(-2)^n +4)/10, {n, 0, 30}] (* G. C. Greubel, Dec 27 2019 *)
LinearRecurrence[{5, 8, -12}, {1, 0, 6}, 30] (* Harvey P. Dale, Oct 21 2021 *)
PROG
(PARI) Vec((1 - 5*x - 2*x^2) / ((1 - x)*(1 + 2*x)*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Dec 26 2019
(PARI) vector(31, n, (6^(n-1) +5*(-2)^(n-1) +4)/10) \\ G. C. Greubel, Dec 27 2019
(Magma) [(6^n +5*(-2)^n +4)/10: n in [0..30]]; // G. C. Greubel, Dec 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1 - 5*x - 2*x^2) / ((1 - x)*(1 + 2*x)*(1 - 6*x)))); // Marius A. Burtea, Dec 29 2019
(Sage) [(6^n +5*(-2)^n +4)/10 for n in (0..30)] # G. C. Greubel, Dec 27 2019
(GAP) List([0..30], n-> (6^n +5*(-2)^n +4)/10); # G. C. Greubel, Dec 27 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 17 2003
STATUS
approved