login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091054
Expansion of (1 - 5*x - 2*x^2) / ((1 - x)*(1 + 2*x)*(1 - 6*x)).
3
1, 0, 6, 18, 138, 762, 4698, 27930, 168090, 1007514, 6047130, 36278682, 217680282, 1306065306, 7836424602, 47018482074, 282111023514, 1692665878938, 10155995797914, 60935973738906, 365615844530586, 2193695062989210
OFFSET
0,3
COMMENTS
Closed walks of length n at a vertex of the Johnson graph J(5,2).
6^n = a(n) + 6*A091055(n) + 3*4*A091056(n).
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph
FORMULA
a(n) = (6^n + 5*(-2)^n + 4)/10.
a(n) = 5*a(n-1) + 8*a(n-2) - 12*a(n-3) for n>2. - Colin Barker, Dec 26 2019
E.g.f.: (exp(6*x) + 5*exp(-2*x) + 4*exp(x))/10. - G. C. Greubel, Dec 27 2019
MAPLE
seq( (6^n +5*(-2)^n +4)/10, n=0..30); # G. C. Greubel, Dec 27 2019
MATHEMATICA
Table[(6^n +5*(-2)^n +4)/10, {n, 0, 30}] (* G. C. Greubel, Dec 27 2019 *)
LinearRecurrence[{5, 8, -12}, {1, 0, 6}, 30] (* Harvey P. Dale, Oct 21 2021 *)
PROG
(PARI) Vec((1 - 5*x - 2*x^2) / ((1 - x)*(1 + 2*x)*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Dec 26 2019
(PARI) vector(31, n, (6^(n-1) +5*(-2)^(n-1) +4)/10) \\ G. C. Greubel, Dec 27 2019
(Magma) [(6^n +5*(-2)^n +4)/10: n in [0..30]]; // G. C. Greubel, Dec 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1 - 5*x - 2*x^2) / ((1 - x)*(1 + 2*x)*(1 - 6*x)))); // Marius A. Burtea, Dec 29 2019
(Sage) [(6^n +5*(-2)^n +4)/10 for n in (0..30)] # G. C. Greubel, Dec 27 2019
(GAP) List([0..30], n-> (6^n +5*(-2)^n +4)/10); # G. C. Greubel, Dec 27 2019
CROSSREFS
Sequence in context: A003496 A009582 A222913 * A012774 A306656 A027744
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 17 2003
STATUS
approved