login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091003 Expansion of (1-3*x^2)/((1-2*x)*(1+3*x)). 5
1, -1, 4, -10, 34, -94, 298, -862, 2650, -7822, 23722, -70654, 212986, -636910, 1914826, -5736286, 17225242, -51642958, 154994410, -464852158, 1394818618, -4183931566, 12552843274, -37656432670, 112973492314, -338912088334, 1016753042218 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Inverse binomial transform of A091000.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-1,6).

FORMULA

2^n = A091003(n) + 3*A091004(n) + 6*A091005(n).

a(n) = (2^n + 4*(-3)^n + 5*0^n)/10.

E.g.f.: (exp(2*x) + 4*exp(-3*x) + 5)/10. - G. C. Greubel, Feb 01 2019

MATHEMATICA

CoefficientList[Series[(1-3x^2)/((1-2x)(1+3x)), {x, 0, 30}], x] (* Harvey P. Dale, Dec 23 2014 *)

Join[{1}, LinearRecurrence[{-1, 6}, {-1, 4}, 30]] (* G. C. Greubel, Feb 01 2019 *)

PROG

(PARI) vector(30, n, n--; (2^n + 4*(-3)^n + 5*0^n)/10) \\ G. C. Greubel, Feb 01 2019

(MAGMA) [1] cat [(2^n + 4*(-3)^n)/10: n in [1..30]]; // G. C. Greubel, Feb 01 2019

(Sage) [1] + [(2^n + 4*(-3)^n)/10 for n in (1..30)] # G. C. Greubel, Feb 01 2019

(GAP) Concatenation([1], List([1..30], n -> (2^n + 4*(-3)^n)/10)) # G. C. Greubel, Feb 01 2019

CROSSREFS

Sequence in context: A066454 A301595 A022445 * A140725 A005630 A100507

Adjacent sequences:  A091000 A091001 A091002 * A091004 A091005 A091006

KEYWORD

easy,sign

AUTHOR

Paul Barry, Dec 13 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 21:17 EST 2021. Contains 349468 sequences. (Running on oeis4.)