login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090982
a(n) = partitions(n)*partitions(n+1).
2
1, 2, 6, 15, 35, 77, 165, 330, 660, 1260, 2352, 4312, 7777, 13635, 23760, 40656, 68607, 114345, 188650, 307230, 496584, 793584, 1257510, 1976625, 3083850, 4769688, 7332360, 11191180, 16972670, 25582260, 38342568, 57123858, 84683907
OFFSET
0,2
LINKS
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/3))/(48*n^2) * (1 + (11*Pi/(12*sqrt(6)) - sqrt(6)/Pi)/sqrt(n) + (3/(2*Pi^2) - 11/6 + 121*Pi^2/1728)/n). - Vaclav Kotesovec, Nov 04 2016
EXAMPLE
a(3)=15 because partitions(3)*partitions(4) = 3*5 = 15.
MAPLE
with(combinat): seq(numbpart(k)*numbpart(k+1), k=0..32) ; # Zerinvary Lajos, Jun 06 2007
MATHEMATICA
Table[PartitionsP[n + 1]*PartitionsP[n], {n, 0, 36}]
PROG
(PARI) a(n)=numbpart(n)*numbpart(n+1) \\ Charles R Greathouse IV, Sep 02 2009
CROSSREFS
Sequence in context: A076060 A126764 A272340 * A153517 A136302 A116404
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Feb 28 2004
STATUS
approved