Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:12
%S 1,30,495,7280,101745,1381380,18407025,242082720,3153092085,
%T 40763504210,523886186670,6700599687600,85360889543475,
%U 1083790852008480,13721016740550360,173280964190422080,2183615911571190525
%N a(n) = 1/(Integral_{x=0..1} (x^4 - x^5)^n dx).
%H G. C. Greubel, <a href="/A090957/b090957.txt">Table of n, a(n) for n = 0..915</a>
%F a(n) = 1/B(4*n+1,n+1) = (5*n+1)!/(n! * (4*n)!), where B(p,q) is Euler's beta function. - _Emeric Deutsch_, Jul 03 2009
%F a(n) ~ sqrt(n)*5^(5*n+3/2) / (sqrt(Pi)*2^(8*n+3/2)). - _Vaclav Kotesovec_, Aug 15 2017
%p seq(factorial(5*n+1)/(factorial(n)*factorial(4*n)), n = 0 .. 16); # _Emeric Deutsch_, Jul 03 2009
%t Table[1/Integrate[(x^4-x^5)^n,{x,0,1}],{n,0,20}] (* _Harvey P. Dale_, Jan 02 2013 *)
%t Table[1/Beta[4*n+1,n+1], {n,0,20}] (* _G. C. Greubel_, Feb 03 2019 *)
%o (PARI) for (n = 0, 20, pol = (x^4 - x^5)^n; s = 0; for (i = 4*n, 5*n, s += polcoeff(pol, i)/(i + 1)); print(1/s)); \\ _David Wasserman_, Feb 22 2006
%o (PARI) vector(20, n, n--; (5*n+1)!/(n!*(4*n)!)) \\ _G. C. Greubel_, Feb 03 2019
%o (Magma) [Factorial(5*n+1)/(Factorial(n)*Factorial(4*n)): n in [0..20]]; // _G. C. Greubel_, Feb 03 2019
%o (Sage) [1/beta(4*n+1,n+1) for n in range(20)] # _G. C. Greubel_, Feb 03 2019
%Y Cf. A002457, A090816, A090969.
%K nonn
%O 0,2
%A Al Hakanson (hawkuu(AT)excite.com), Feb 27 2004
%E More terms from _David Wasserman_, Feb 22 2006