login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090957
a(n) = 1/(Integral_{x=0..1} (x^4 - x^5)^n dx).
4
1, 30, 495, 7280, 101745, 1381380, 18407025, 242082720, 3153092085, 40763504210, 523886186670, 6700599687600, 85360889543475, 1083790852008480, 13721016740550360, 173280964190422080, 2183615911571190525
OFFSET
0,2
LINKS
FORMULA
a(n) = 1/B(4*n+1,n+1) = (5*n+1)!/(n! * (4*n)!), where B(p,q) is Euler's beta function. - Emeric Deutsch, Jul 03 2009
a(n) ~ sqrt(n)*5^(5*n+3/2) / (sqrt(Pi)*2^(8*n+3/2)). - Vaclav Kotesovec, Aug 15 2017
MAPLE
seq(factorial(5*n+1)/(factorial(n)*factorial(4*n)), n = 0 .. 16); # Emeric Deutsch, Jul 03 2009
MATHEMATICA
Table[1/Integrate[(x^4-x^5)^n, {x, 0, 1}], {n, 0, 20}] (* Harvey P. Dale, Jan 02 2013 *)
Table[1/Beta[4*n+1, n+1], {n, 0, 20}] (* G. C. Greubel, Feb 03 2019 *)
PROG
(PARI) for (n = 0, 20, pol = (x^4 - x^5)^n; s = 0; for (i = 4*n, 5*n, s += polcoeff(pol, i)/(i + 1)); print(1/s)); \\ David Wasserman, Feb 22 2006
(PARI) vector(20, n, n--; (5*n+1)!/(n!*(4*n)!)) \\ G. C. Greubel, Feb 03 2019
(Magma) [Factorial(5*n+1)/(Factorial(n)*Factorial(4*n)): n in [0..20]]; // G. C. Greubel, Feb 03 2019
(Sage) [1/beta(4*n+1, n+1) for n in range(20)] # G. C. Greubel, Feb 03 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Feb 27 2004
EXTENSIONS
More terms from David Wasserman, Feb 22 2006
STATUS
approved