login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090601
Number of n-element groupoids with an identity.
2
1, 2, 45, 43968, 6358196250, 236919104155855296, 3682959509036574988532481464, 35398008251644050232134479709365068115968, 292415292106611727928759157427747328169866020125762652311
OFFSET
1,2
COMMENTS
Also partial groupoids with n-1 elements or groupoids with an absorbant (zero) element with n elements.
FORMULA
a(n+1) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i, j>=1} ( (1 + sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j))
a(n) asymptotic to n^((n-1)^2+1)/n! = A090602(n)/A000142(n) = A090603(n)/A000142(n-1)
PROG
(Sage)
R.<a> = InfinitePolynomialRing(QQ)
@cached_function
def Z(n):
if n==0:
return R.one()
return sum(a[k]*Z(n-k) for k in (1..n))/n
def magmas_identity(n):
P = Z(n-1)
q = 0
c = P.coefficients()
count = 0
for m in P.monomials():
r = 1
T = m.variables()
S = list(T)
for u in T:
i = R.varname_key(str(u))[1]
j = m.degree(u)
D = 1
for d in divisors(i):
D += d*m.degrees()[-d-1]
r *= D^(i*j^2)
S.remove(u)
for v in S:
k = R.varname_key(str(v))[1]
l = m.degree(v)
D = 1
for d in divisors(lcm(i, k)):
try:
D += d*m.degrees()[-d-1]
except:
break
r *= D^(gcd(i, k)*j*l*2)
q += c[count]*r
count += 1
return q
# Philip Turecek, Oct 10 2023
CROSSREFS
Sequence in context: A209606 A100101 A332244 * A266016 A071777 A179108
KEYWORD
nonn
AUTHOR
Christian G. Bower, Dec 05 2003
STATUS
approved