login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090375
Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.
1
1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
OFFSET
1,3
LINKS
FORMULA
a(n) = 2*A069727(n) - A090371(n).
a(2k+1) = 2^k*Catalan(k) = A052701(k+1).
MATHEMATICA
A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1);
d[n_] := 4 - Mod[n, 2];
h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2));
A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n;
a[n_] := 2 A069727[n] - A090371[n];
Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
PROG
(PARI) h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n;
d(n) = if (n%2, 3, 4);
q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2));
a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n));
a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Dec 01 2003
EXTENSIONS
More terms from Michel Marcus, Dec 11 2014
STATUS
approved