login
A090375
Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.
1
1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
OFFSET
1,3
LINKS
FORMULA
a(n) = 2*A069727(n) - A090371(n).
a(2k+1) = 2^k*Catalan(k) = A052701(k+1).
MATHEMATICA
A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1;
q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1);
d[n_] := 4 - Mod[n, 2];
h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2));
A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n;
a[n_] := 2 A069727[n] - A090371[n];
Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
PROG
(PARI) h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n;
d(n) = if (n%2, 3, 4);
q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2));
a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n));
a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Dec 01 2003
EXTENSIONS
More terms from Michel Marcus, Dec 11 2014
STATUS
approved