The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090277 "Plain Bob Minimus" in bell-ringing is a sequence of permutations p_1=(1,2,3,4), p_2=(2,1,4,3), .. which runs through all permutations of {1,2,3,4} with period 24; sequence gives number in position 1 of n-th permutation. 7
1, 2, 2, 4, 4, 3, 3, 1, 1, 3, 3, 2, 2, 4, 4, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 3, 3, 2, 2, 4, 4, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 3, 3, 2, 2, 4, 4, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 3, 3, 2, 2, 4, 4, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1).
FORMULA
Period 24.
From Chai Wah Wu, Jul 17 2016: (Start)
a(n) = a(n-1) - a(n-6) + a(n-7) - a(n-12) + a(n-13) - a(n-18) + a(n-19) for n > 19.
G.f.: x*(-x^18 - x^17 - x^15 - x^13 - x^12 + 2*x^11 - 4*x^9 + x^7 - x^6 + x^5 - 2*x^3 - x - 1)/(x^19 - x^18 + x^13 - x^12 + x^7 - x^6 + x - 1). (End)
EXAMPLE
The full list of the 24 permutations is as follows (the present sequence gives the first column):
1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4
1 3 4 2
3 1 2 4
3 2 1 4
2 3 4 1
2 4 3 1
4 2 1 3
4 1 2 3
1 4 3 2
1 4 2 3
4 1 3 2
4 3 1 2
3 4 2 1
3 2 4 1
2 3 1 4
2 1 3 4
1 2 4 3
MAPLE
ring:= proc(k) option remember; local l, a, b, c, swap, h; l:= [1, 2, 3, 4]; swap:= proc(i, j) h:=l[i]; l[i]:=l[j]; l[j]:=h end; a:= proc() swap(1, 2); swap(3, 4); l[k] end; b:= proc() swap(2, 3); l[k] end; c:= proc() swap(3, 4); l[k] end; [l[k], seq ([seq ([a(), b()][], j=1..3), a(), c()][], i=1..3)] end: a:= n-> ring(1)[modp(n-1, 24)+1]: seq (a(n), n=1..99); # Alois P. Heinz, Aug 19 2008
MATHEMATICA
ring[k_] := ring[k] = Module[{l = Range[4], a, b, c, swap, h}, swap[i_, j_] := (h = l[[i]]; l[[i]] = l[[j]]; l[[j]] = h); a := (swap[1, 2]; swap[3, 4]; l[[k]]); b := (swap[2, 3]; l[[k]]); c := (swap[3, 4]; l[[k]]); Join[{l[[k]]}, Table[{Table[{a, b}, {j, 1, 3}], a, c}, {i, 1, 3}]] // Flatten]; a[n_] := ring[1][[Mod[n-1, 24]+1]]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A339179 A182923 A263856 * A324662 A024222 A196063
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 24 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 05:10 EDT 2024. Contains 373423 sequences. (Running on oeis4.)