login
A090204
a(n) = p-th digit of sqrt(2) where p = n-th prime.
0
4, 1, 2, 3, 3, 3, 0, 8, 6, 2, 9, 8, 6, 1, 3, 0, 6, 9, 0, 4, 8, 7, 8, 5, 1, 7, 5, 8, 6, 9, 6, 8, 2, 2, 0, 9, 1, 2, 9, 5, 7, 9, 7, 2, 5, 1, 1, 4, 8, 2, 7, 4, 8, 6, 3, 4, 7, 4, 0, 7, 2, 2, 3, 5, 6, 8, 5, 2, 7, 0, 7, 7, 5, 7, 7, 3, 6, 8, 1, 9, 8, 5, 7, 0, 4, 8, 4, 8, 5, 0, 4, 7, 5, 5, 7, 2, 2, 7, 5, 6, 2, 5, 4, 7, 6
OFFSET
2,1
COMMENTS
The prime-th digits of sqrt(2).
Are the numbers in this sequence uniformly distributed? Could this sequence and A090201-A090203 be used as a random number generators?
EXAMPLE
The 5th prime is 11. The 11th digit of sqrt(2) is 3, the 5th term in the sequence.
PROG
(PARI) \primeth.gp primeth(n) = { default(realprecision, 1000); p=Str(sqrt(2)*10^999); default(realprecision, 28); forprime(x=2, n, print1(mid(p, x, 1)", ") ) } mid(str, s, n) = { v =""; tmp = Vec(str); ln=length(tmp); for(x=s, s+n-1, v=concat(v, tmp[x]); ); return(v) }
CROSSREFS
Sequence in context: A196138 A198185 A197889 * A156915 A212497 A072046
KEYWORD
base,easy,nonn
AUTHOR
Cino Hilliard, Jan 22 2004
STATUS
approved