OFFSET
1,2
COMMENTS
a(n) is the first argument providing 13 "polynomially consecutive" primes with respect to the polynomial x^2 + x + 41.
a(29) > 5*10^9, if it exists. - Amiram Eldar, Sep 27 2024
EXAMPLE
k = 219: {P(219), ..., P(231)} = {48221, ..., 53633}, i.e., 13 consecutive integer values substituted to P(x) = x^2 + x + 41 polynomial, all provide primes. The "classical case" includes one single 41-chain of PC-primes, see A055561.
MATHEMATICA
Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 + k + 41], {k, 1, 1000}], 13, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
PROG
(PARI) isp(x) = isprime(x^2 + x + 41);
lista(kmax) = {my(v = vector(13, k, isp(k))); for(k = 14, kmax, if(vecprod(v) == 1, print1(k - 13, ", ")); v = concat(vecextract(v, "^1"), isp(k))); } \\ Amiram Eldar, Sep 27 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Dec 22 2003
EXTENSIONS
2 wrong terms removed by Amiram Eldar, Sep 27 2024
STATUS
approved