login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089639 Denominator of (5/2)*Sum_{i=1..n} (-1)^(i-1)/(i^3*C(2*i,i)). 1
1, 4, 96, 864, 48384, 1209600, 5702400, 25427001600, 203416012800, 31122649958400, 53757304473600, 71550972254361600, 7446481275340800, 278118629152703539200, 278118629152703539200, 40327201227142013184000, 588302700254777604096000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Related to Apery's proof of the irrationality of zeta(3).

LINKS

Table of n, a(n) for n=0..16.

C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.

FORMULA

(5/2)*Sum_{i >= 1} (-1)^(i-1)/(i^3*C(2*i, i)) = zeta(3).

EXAMPLE

0, 5/4, 115/96, 1039/864, 58157/48384, 1454021/1209600, 6854599/5702400, ... -> zeta(3).

MATHEMATICA

Denominator[Table[5/2 Sum[(-1)^(i-1)/(i^3 Binomial[2i, i]), {i, n}], {n, 0, 20}]] (* Harvey P. Dale, Aug 25 2012 *)

PROG

(PARI) a(n)=denominator(5/2*sum(k=1, n, (-1)^(k+1)/k^3/binomial(2*k, k)))

CROSSREFS

Cf. A002117, A089638.

Sequence in context: A203316 A359653 A202682 * A269091 A204973 A204700

Adjacent sequences: A089636 A089637 A089638 * A089640 A089641 A089642

KEYWORD

nonn,frac

AUTHOR

Benoit Cloitre, Jan 01 2004

EXTENSIONS

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 09:46 EDT 2023. Contains 361470 sequences. (Running on oeis4.)