|
|
A089639
|
|
Denominator of (5/2)*Sum_{i=1..n} (-1)^(i-1)/(i^3*C(2*i,i)).
|
|
1
|
|
|
1, 4, 96, 864, 48384, 1209600, 5702400, 25427001600, 203416012800, 31122649958400, 53757304473600, 71550972254361600, 7446481275340800, 278118629152703539200, 278118629152703539200, 40327201227142013184000, 588302700254777604096000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Related to Apery's proof of the irrationality of zeta(3).
|
|
LINKS
|
|
|
FORMULA
|
(5/2)*Sum_{i >= 1} (-1)^(i-1)/(i^3*C(2*i, i)) = zeta(3).
|
|
EXAMPLE
|
0, 5/4, 115/96, 1039/864, 58157/48384, 1454021/1209600, 6854599/5702400, ... -> zeta(3).
|
|
MATHEMATICA
|
Denominator[Table[5/2 Sum[(-1)^(i-1)/(i^3 Binomial[2i, i]), {i, n}], {n, 0, 20}]] (* Harvey P. Dale, Aug 25 2012 *)
|
|
PROG
|
(PARI) a(n)=denominator(5/2*sum(k=1, n, (-1)^(k+1)/k^3/binomial(2*k, k)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|