login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089639 Denominator of (5/2)*Sum_{i=1..n} (-1)^(i-1)/(i^3*C(2*i,i)). 1
1, 4, 96, 864, 48384, 1209600, 5702400, 25427001600, 203416012800, 31122649958400, 53757304473600, 71550972254361600, 7446481275340800, 278118629152703539200, 278118629152703539200, 40327201227142013184000, 588302700254777604096000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Related to Apery's proof of the irrationality of zeta(3).
LINKS
FORMULA
(5/2)*Sum_{i >= 1} (-1)^(i-1)/(i^3*C(2*i, i)) = zeta(3).
EXAMPLE
0, 5/4, 115/96, 1039/864, 58157/48384, 1454021/1209600, 6854599/5702400, ... -> zeta(3).
MATHEMATICA
Denominator[Table[5/2 Sum[(-1)^(i-1)/(i^3 Binomial[2i, i]), {i, n}], {n, 0, 20}]] (* Harvey P. Dale, Aug 25 2012 *)
PROG
(PARI) a(n)=denominator(5/2*sum(k=1, n, (-1)^(k+1)/k^3/binomial(2*k, k)))
CROSSREFS
Sequence in context: A203316 A359653 A202682 * A269091 A204973 A204700
KEYWORD
nonn,frac
AUTHOR
Benoit Cloitre, Jan 01 2004
EXTENSIONS
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 23:59 EDT 2024. Contains 375984 sequences. (Running on oeis4.)