login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089638 Numerator of (5/2)*Sum_{i=1..n} (-1)^(i-1)/(i^3*C(2*i,i)). 1
0, 5, 115, 1039, 58157, 1454021, 6854599, 30564710941, 244517610353, 37411196579209, 64619338818497, 86008340157931507, 8951094220597141, 334314418075511195849, 334314418069194908729, 48475590620225838341897, 707173321988579559023843 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Related to Apery's proof of the irrationality of zeta(3).

LINKS

Table of n, a(n) for n=0..16.

C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.

FORMULA

(5/2)*Sum_{i >= 1} (-1)^(i-1)/(i^3*C(2*i, i)) = zeta(3).

EXAMPLE

0, 5/4, 115/96, 1039/864, 58157/48384, 1454021/1209600, 6854599/5702400, ... -> zeta(3).

PROG

(PARI) a(n)=numerator(5/2*sum(k=1, n, (-1)^(k+1)/k^3/binomial(2*k, k)))

CROSSREFS

Cf. A002117, A089639.

Sequence in context: A207999 A223057 A208783 * A209175 A209719 A208959

Adjacent sequences:  A089635 A089636 A089637 * A089639 A089640 A089641

KEYWORD

nonn,frac

AUTHOR

Benoit Cloitre, Jan 01 2004

EXTENSIONS

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 5 06:51 EDT 2022. Contains 357252 sequences. (Running on oeis4.)