login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089401
a(n) = m - A089398(2^m + n) for m>=n.
2
1, 1, 3, 2, 4, 5, 6, 5, 7, 8, 11, 9, 11, 12, 13, 12, 14, 15, 18, 18, 19, 20, 21, 20, 22, 23, 26, 24, 26, 27, 28, 27, 29, 30, 33, 33, 36, 36, 37, 36, 38, 39, 42, 40, 42, 43, 44, 43, 45, 46, 49, 49, 50, 51, 52, 51, 53, 54, 57, 55, 57, 58, 59, 58, 60, 61, 64, 64, 67, 69, 69, 68, 70
OFFSET
1,3
COMMENTS
A089398(n) = n-th column sum of binary digits of k*2^(k-1), where summation is over all k>=1, without carrying from columns sums that may exceed 2.
Row sums of triangular arrays in A103582 and in A103583. - Philippe Deléham, Apr 04 2005
FORMULA
a(n) = n/2+1/2*sum(k=1, n, (-1)^floor((n-k)/2^(k-1))). - Benoit Cloitre, Mar 28 2005
Let a(0)=0; when n - 2^[log_2(n)] <= [log_2(n)] then a(n) = a(n - 2^[log_2(n)]) + n - [log_2(n)], else a(n) = a(n - 2^[log_2(n)]) + 2^[log_2(n)] - 1. Thus a(2^m) = 2^m - m for all m>=0; for 0<=k<=m: a(2^m + k) = a(k) + 2^m + k - m; for m<k<=2^m: a(2^m + k) = a(k) + 2^m - 1. - Paul D. Hanna, Mar 28 2005
EXAMPLE
a(6)=5 since 7 - A089398(2^7 + 6) = 7 - 2 = 5.
MATHEMATICA
f[n_] := Block[{lg = Floor[Log[2, n]] + 1}, Sum[ Join[ Reverse[ IntegerDigits[n - i + 1, 2]], {0}][[i]], {i, lg}]]; Table[n - f[2^n + n] + 2, {n, 0, 72}] (* Robert G. Wilson v, Mar 29 2005 *)
PROG
(PARI) a(n)=n/2+1/2*sum(k=1, n, (-1)^floor((n-k)/2^(k-1))) \\ Benoit Cloitre
(PARI) {a(n)=if(n<=0, 0, m=floor(log(n)/log(2)); if(n-2^m<=m, n-m+a(n-2^m), 2^m-1+a(n-2^m)))} \\ Paul D. Hanna, Mar 28 2005
CROSSREFS
Sequence in context: A173258 A039858 A035558 * A373952 A035044 A359663
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 30 2003
EXTENSIONS
More terms from Benoit Cloitre and Robert G. Wilson v, Mar 28 2005
STATUS
approved