login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088997
Base-10 numbers such that a(n) plus any nonnegative palindrome less than a(n) does not yield a palindrome.
2
12, 23, 34, 45, 1011, 1020, 1021, 1029, 1031, 1038, 1041, 1047, 1051, 1061, 1065, 1071, 1074, 1081, 1091, 1092, 1101, 1112, 1121, 1130, 1131, 1132, 1139, 1141, 1142, 1148, 1151, 1152, 1157, 1161, 1162, 1171, 1172, 1175, 1181, 1182, 1191, 1192, 1201
OFFSET
1,1
COMMENTS
This sequence cannot contain palindromes since 0 is a palindrome and any palindrome plus 0 is also a palindrome.
EXAMPLE
a(2) = 23 because 23 plus any smaller palindromic number (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22) does not yield a palindrome.
MAPLE
reverse := proc (d) local n, m; m := 0; n := d; while n>0 do m := m*10+(n mod 10); n := (n-(n mod 10))/10; od; m; end; isPalindromic := proc (n) if (n=reverse(n)) then true; else false; fi; end; n := 0; found := false; nosum := []; for c to 1400 do; while not(found) and n<c do; if isPalindromic(c+n) then found := true; else n := nextPal(n) fi; od; if not(found) then nosum := [op(nosum), c]; n := 0; else n := 0; found := false; fi; od; nosum;
MATHEMATICA
dnypQ[n_]:=NoneTrue[n+Select[Range[n-1], PalindromeQ], PalindromeQ];
Module[ {upto=1500}, Select[Range[upto], !PalindromeQ[#]&&dnypQ[#]&]] (* Harvey P. Dale, Dec 02 2021 *)
PROG
(PARI) is(n)=!for(k=0, n-1, is_A002113(k)&&is_A002113(n+k)&&return) \\ M. F. Hasler, Apr 26 2014
CROSSREFS
Sequence in context: A127421 A112131 A233032 * A049852 A045532 A255729
KEYWORD
base,nonn
AUTHOR
Chuck Seggelin (barkeep(AT)plastereddragon.com), Dec 01 2003
EXTENSIONS
Definition corrected and further edits by M. F. Hasler, Apr 26 2014
STATUS
approved