login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088679
a(n) = a(n-1)^2 * n / (n-1), n>1, a(0) = 0, a(1) = 1.
3
0, 1, 2, 6, 48, 2880, 9953280, 115579079884800, 15266884236590834264309760000, 262212473580148912869121218589990322256745385164800000000
OFFSET
0,3
COMMENTS
Unreduced numerators of: f(1) = 1, f(n) = f(n-1) + f(n-1)/(n-1). - Daniel Suteu, Jul 29 2016
LINKS
Andressa Paola Cordeiro, Alexandre Tavares Baraviera, and Alex Jenaro Becker, Entropy for k-trees defined by k transition matrices, arXiv:2307.05850 [math.DS], 2023. See p. 13.
FORMULA
a(n) is asymptotic to c^(2^n)*(1-1/n+2/n^2-6/n^3+25/n^4-137/n^5+...) where c=1.28906475773... and coefficient of n^-k is (-1)^k*A084784(k).
a(0) = 0, a(1) = 1, a(n) = n * Product i=1..(n-1) a(i) for n > 1. - Gerald McGarvey, Jun 11 2004 Corrected by Jaroslav Krizek, Oct 16 2009
a(n)^2 = n * A052129(n). Michael Somos, May 13 2012
a(n+1)/A052129(n) = n+1. - Daniel Suteu, Jul 29 2016
EXAMPLE
x + 2*x^2 + 6*x^3 + 48*x^4 + 2880*x^5 + 9953280*x^6 + ...
MATHEMATICA
Join[{0}, RecurrenceTable[{a[1]==1, a[n]==a[n-1]^2 n/(n-1)}, a, {n, 10}]] (* Harvey P. Dale, Jan 16 2015 *)
PROG
(PARI) {a(n) = if( n<2, n>0, a(n-1)^2 * n / (n-1))}
CROSSREFS
Cf. A052129.
Sequence in context: A230053 A245283 A126023 * A161766 A074020 A080310
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 05 2003
STATUS
approved