|
|
A088605
|
|
a(n) is the beginning of the first set of n consecutive primes such that the concatenation of n with each of these primes is also prime.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(8) > 10^11, a(9) = 11408039. - Hans Havermann, Sep 16 2005
|
|
LINKS
|
Table of n, a(n) for n=1..7.
|
|
EXAMPLE
|
a(3) = 7 because 7, 11 and 13 are 3 consecutive primes and 37, 311 and 313 are all prime.
|
|
MATHEMATICA
|
<<NumberTheory`; Do[s = 0; l = {}; While[Length[l] < n, s++; l = List[Prime[s]]; k = 1; While[k < n, p = l[[k]]; AppendTo[l, NextPrime[p]]; k++ ]; l = ToString /@ l; l = Map[ToString[n] <> #&, l]; l = ToExpression /@ l; l = Select[l, PrimeQ]]; Print[Prime[s]], {n, 1, 30}]; (* Ryan Propper, Aug 14 2005 *)
|
|
CROSSREFS
|
Sequence in context: A196086 A196083 A285098 * A272816 A063562 A130475
Adjacent sequences: A088602 A088603 A088604 * A088606 A088607 A088608
|
|
KEYWORD
|
base,hard,nonn
|
|
AUTHOR
|
Amarnath Murthy, Oct 15 2003
|
|
EXTENSIONS
|
Corrected, extended and edited by Ryan Propper and David Wasserman, Aug 14 2005
a(7) from Hans Havermann, Sep 16 2005
|
|
STATUS
|
approved
|
|
|
|