|
|
A063562
|
|
Smallest k such that 3^k has exactly n 7's in its decimal representation.
|
|
0
|
|
|
1, 3, 23, 11, 47, 41, 50, 100, 123, 90, 174, 112, 179, 172, 201, 233, 168, 146, 211, 280, 247, 330, 294, 369, 411, 390, 401, 451, 374, 344, 448, 468, 516, 501, 536, 559, 574, 498, 523, 577, 662, 678, 722, 618, 615, 833, 686, 782, 717, 794, 707
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..50.
|
|
MATHEMATICA
|
a = {}; Do[k = 1; While[ Count[ IntegerDigits[3^k], 7] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
|
|
CROSSREFS
|
Sequence in context: A285098 A088605 A272816 * A130475 A212998 A157819
Adjacent sequences: A063559 A063560 A063561 * A063563 A063564 A063565
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 10 2001
|
|
EXTENSIONS
|
Name corrected by Jon E. Schoenfield, Jun 26 2018
|
|
STATUS
|
approved
|
|
|
|