login
A088498
Numbers k such that k^2 + k - 1 and k^2 + k + 1 are twin primes and (k + 1)*(k + 1) + k + 1 - 1 and (k + 1)*(k + 1) + k + 1 + 1 are also twin primes.
1
2, 5, 20, 455, 1364, 2204, 2450, 2729, 8540, 18485, 32198, 32318, 32780, 45863, 61214, 72554, 72560, 82145, 83258, 86603, 91370, 95198, 125333, 149330, 176888, 182909, 185534, 210845, 225665, 226253, 288419, 343160, 350090, 403940, 411500
OFFSET
1,1
LINKS
EXAMPLE
20 is a term since 20^2 + 20 - 1 = 419, 419 and 421 are twin primes, 21^2 + 21 - 1 = 461, and 461 and 463 are also twin primes.
MATHEMATICA
Select[ Range[510397], PrimeQ[ #^2 + # - 1] && PrimeQ[ #^2 + # + 1] && PrimeQ[ #^2 + 3# + 1] && PrimeQ[ #^2 + 3# + 3] & ]
Select[Range[412000], AllTrue[Flatten[{#^2+#+{1, -1}, (#+1)(#+1)+#+{0, 2}}], PrimeQ]&] (* Harvey P. Dale, Feb 12 2022 *)
CROSSREFS
Cf. A088485.
Sequence in context: A216462 A006893 A003163 * A240147 A358556 A293687
KEYWORD
base,nonn
AUTHOR
Pierre CAMI, Nov 11 2003
EXTENSIONS
Corrected and extended by Ray Chandler and Robert G. Wilson v, Nov 12 2003
STATUS
approved