login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088426
Number of primes in arithmetic progression starting with 19 and with d=2n.
10
1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 4, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 4, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
Arithmetic progression is stopped when next term is not prime. E.g. for n=6 (d=12), a=3, that is 19,31,43 are prime, while next term, 55, is not prime.
From Robert Israel, Jul 27 2020: (Start)
a(n) = 1 if n == 1 (mod 3), a(n) <= 2 if n == 2 (mod 3).
If a(n) >= p where p is 3, 5, 7, 11, 13 or 17, then n is divisible by p.
All a(n) < 19.
Records:
a(1)=1
a(2)=2
a(6)=3
a(27)=4
a(210)=5
a(825)=6
a(16380)=7
a(273420)=9
a(17853675)=10 (End)
From David A. Corneth, Jul 29 2020: (Start)
Other first occurrences are:
a(779520) = 8
a(4918073160) = 11
a(3187366788375) = 12
a(6125952702870) = 13
If a(k) = 14 then k > 4.8*10^15.
If a(k) = 15 then k > 1.77 * 10^16. (End)
LINKS
MAPLE
f:= proc(n) local d, k;
d:= 2*n;
for k from 1 while isprime(19+d*k) do od:
k
end proc:
map(f, [$1..200]); # Robert Israel, Jul 27 2020
MATHEMATICA
bb={}; Do[s=1; Do[If[PrimeQ[19+k*d], s=s+1, bb={bb, s}; Break[]], {k, 10}], {d, 2, 200, 2}]; Flatten[bb]
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Sep 29 2003
STATUS
approved