login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088352
G.f. = continued fraction: A(x) = 1/(1-x-x^2/(1-x^3-x^4/(1-x^5-x^6/(1-x^7-x^8/(...))))).
9
1, 1, 2, 3, 5, 9, 16, 28, 50, 89, 158, 282, 503, 896, 1598, 2850, 5082, 9064, 16166, 28832, 51424, 91719, 163588, 291774, 520407, 928196, 1655530, 2952805, 5266626, 9393565, 16754386, 29883166, 53299700, 95065503, 169559118, 302426167, 539408258, 962090267
OFFSET
0,3
COMMENTS
From Peter Bala, Jul 29 2019: (Start)
a(n) = the number of triangle stacks of large Schröder type on n triangles. See Links for a definition and an illustration.
Cf. A224704, which enumerates triangle stacks (of small Schröder type) on n triangles and A143951, which enumerates triangle stacks (of Dyck type) on n triangles. (End)
FORMULA
a(n) ~ c * d^n, where d = 1.78360320457574331710673100097614660803225788206... and c = 0.4843739369092187339166963460525819972933890792971... - Vaclav Kotesovec, Jul 01 2019
From Peter Bala, Jul 29 2019: (Start)
O.g.f. as a continued fraction: A(q) = 1/(1 - q*(1 + q)/(1 - q^4/(1 - q^3*(1 + q^3)/(1 - q^8/( 1 - q^5*(1 + q^5)/(1 - q^12/( (...) ))))))).
O.g.f. as a ratio of q-series: A(q) = N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2+2*n)/( Product_{k = 1..2*n+1} (1 - q^k) ) and D(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2)/( Product_{k = 1..2*n} (1 - q^k) ).
In the above asymptotic formula, 1/d = 0.5606628186... is the minimal positive real zero of D(q), and is the dominant singularity of N(q)/D(q). (End)
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^(2*k), 1 - x^(2*k + 1), {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 01 2019 *)
CROSSREFS
Sequence in context: A079960 A005314 A099529 * A002572 A114834 A143961
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Sep 26 2003
EXTENSIONS
More terms from Vaclav Kotesovec, Jul 01 2019
STATUS
approved