OFFSET
0,3
COMMENTS
From Peter Bala, Jul 29 2019: (Start)
a(n) = the number of triangle stacks of large Schröder type on n triangles. See Links for a definition and an illustration.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300
P. Bala, Illustration for a(5) = 9
FORMULA
a(n) ~ c * d^n, where d = 1.78360320457574331710673100097614660803225788206... and c = 0.4843739369092187339166963460525819972933890792971... - Vaclav Kotesovec, Jul 01 2019
From Peter Bala, Jul 29 2019: (Start)
O.g.f. as a continued fraction: A(q) = 1/(1 - q*(1 + q)/(1 - q^4/(1 - q^3*(1 + q^3)/(1 - q^8/( 1 - q^5*(1 + q^5)/(1 - q^12/( (...) ))))))).
O.g.f. as a ratio of q-series: A(q) = N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2+2*n)/( Product_{k = 1..2*n+1} (1 - q^k) ) and D(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2)/( Product_{k = 1..2*n} (1 - q^k) ).
In the above asymptotic formula, 1/d = 0.5606628186... is the minimal positive real zero of D(q), and is the dominant singularity of N(q)/D(q). (End)
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^(2*k), 1 - x^(2*k + 1), {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 01 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Sep 26 2003
EXTENSIONS
More terms from Vaclav Kotesovec, Jul 01 2019
STATUS
approved