

A088081


Smallest prime(k) such that for every r = 1 to n, there exist i,j, k >= j > i, such that prime(j)prime(i) == 0 ( mod r).


3



3, 5, 5, 7, 7, 11, 17, 17, 17, 17, 17, 17, 29, 29, 29, 29, 29, 29, 41, 41, 41, 41, 53, 53, 53, 53, 53, 53, 53, 53, 67, 67, 71, 71, 71, 71, 79, 79, 79, 79, 79, 79, 89, 89, 89, 89, 97, 97, 101, 101, 101, 101, 109, 109, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131, 131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..65.


EXAMPLE

a(11) = a(12) = 17, but a(13) = 29 as 293 == 0 (mod 13). And we have
53 = 2, 115 = 2*3, 73 = 4, 72 = 5, 115 = 6, 173 = 2*7, 113 = 8, 235 = 2*9, 133 = 10, 13  2 = 11, 175 = 12, 293 = 2*13.


PROG

(PARI) found = vector(500); x = 1; forprime(p = 3, 500, oldX = x; forprime (q = 2, p  1, v = divisors(p  q); for (i = 1, length(v), found[v[i]] = 1; if (v[i] == x, while (found[x], x++; write1("A088081.txt", p" "))))); if (oldX != x, write1("A088083.txt", p" "); write1("A088082.txt", x  1" "))); (Wasserman)


CROSSREFS

Cf. A088082.
Cf. A088083.
Sequence in context: A087821 A204894 A109258 * A206768 A168322 A138475
Adjacent sequences: A088078 A088079 A088080 * A088082 A088083 A088084


KEYWORD

nonn


AUTHOR

Amarnath Murthy, Sep 22 2003


EXTENSIONS

More terms from David Wasserman, Jul 11 2005


STATUS

approved



