login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A088028 Smallest k such that k^2-1 is a squarefree number with n prime divisors. a(n) = A088027(n)^(1/2). 2
2, 4, 14, 34, 254, 664, 5116, 18446, 121694, 887314, 7496644, 63124214, 684394346, 3086525014, 25689944554, 453164666954 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
a(4)^2 = 1156 = 34^2 = 3*5*7*11 + 1.
PROG
(Scheme program from Thomas Baruchel); (define primes '(2 3 5 7 ... 999983)) (compute n) returns A088028(n) (or #f if prime list is too short) computation takes a reasonable amount of time for n <= 16 (slower than "brutal" method for small values of n, but soon becomes much quicker). Result is certified to be the smallest.
(define (compute* n mmax prod offset) (do ((i offset (+ i 1)) (l (length primes))) ((>= (* prod (do ((j 0 (+ j 1)) (p 1)) ((= j n) p) (set! p (* p (list-ref primes (+ i j)))))) mmax) mmax) (let ((p (* prod (list-ref primes i)))) (if (> n 1) (set! mmax (compute* (- n 1) mmax p (+ i 1))) (let ((s (inexact->exact (floor (sqrt (+ p 1)))))) (if (= (* s s) (+ p 1)) (set! mmax p)))))))
(define (compute n) (let* ((p (reverse (cdr primes))) (mmax (apply * (cons (car p) (list-tail p (- (length p) (- n 1)))))) (r (compute* n mmax 1 1))) (if (= mmax r) #f (inexact->exact (floor (sqrt (+ r 1)))))))
CROSSREFS
Cf. A088027.
Sequence in context: A148265 A148266 A000622 * A327459 A336108 A263739
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 19 2003
EXTENSIONS
More terms from Ray Chandler, Oct 04 2003
Further terms from Thomas Baruchel, Oct 11 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 13:22 EDT 2024. Contains 375730 sequences. (Running on oeis4.)