login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087954
(2 + phi)/a(n) is the sum of successive remainders when computing the Euclidean algorithm for (1, A088166(n)/phi) with phi being the golden ratio, where n >= 2.
2
40, 320, 2160, 15004, 103680, 709804, 4868640, 33385280, 228811000, 1568358004, 10749957120, 73681030804, 505018447960, 3461452808000, 23725145626560, 162614587921804, 1114577054219520, 7639424691459004, 52361396168994000, 358890350005878080
OFFSET
2,1
LINKS
FORMULA
For n = 3*k, a(n) = Lucas(4*n) - 2. For all other n, a(n) = Lucas(4*n) - Lucas(2*n).
Empirical g.f.: 4*x^2*(10 + 10*x - 10*x^2 - 139*x^3 + 13*x^4 - 48*x^5 + 144*x^6 - 16*x^7 + 2*x^8 - 7*x^9 + x^10) / ((1 - x)*(1 - 7*x + x^2)*(1 - 3*x + x^2)*(1 + x + x^2)*(1 + 3*x + 8*x^2 + 3*x^3 + x^4)). - Colin Barker, Mar 10 2016
PROG
(PARI) lucas(n) = fibonacci(n+1) + fibonacci(n-1)
a(n) = if(n%3==0, lucas(4*n)-2, lucas(4*n)-lucas(2*n)) \\ Colin Barker, Mar 10 2016
CROSSREFS
Cf. A088166.
Sequence in context: A065255 A300920 A061993 * A160328 A365607 A247407
KEYWORD
easy,nonn
AUTHOR
Thomas Baruchel, Sep 21 2003
STATUS
approved