login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087717
Start with x=n, then iterate the map x -> A322982(x) with A322982(x)=2*x-1 if x is noncomposite, otherwise A322982(x) = A032742(x), the largest proper divisor of x. If this iteration leads to a fixed point then a(n) is the value of that fixed point. If the iteration leads to a cycle, a(n) is the smallest value in the cycle. If the iteration never becomes periodic then a(n)=0.
3
1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 19, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 19, 19, 3, 19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3, 3, 3, 19, 3, 3, 3, 3, 3
OFFSET
1,2
COMMENTS
Conjecture. For n > 1, the iteration given in the definition above always leads to the 3-cycle {3,5,9,3} or the 6-cycle {19,37,73,145,29,57,19}, thus a(n) takes on only the values 3 or 19 for n=2,3,4,.... This has been verified to n=1000000.
In range 2..100000 term 3 occurs 77630 times, while 19 occurs 22369 times. - Antti Karttunen, Jan 03 2019
MATHEMATICA
Which[Length@ Union@ #[[-2 ;; -1]] == 1, Last@ #, MemberQ[{3, 5, 9}, Last@ #], 3, MemberQ[{19, 37, 73, 145, 29, 57}, Last@ #], 19, True, 0] & /@ Array[NestWhileList[If[CompositeQ@ #, Divisors[#][[-2]], 2 # - 1] &, #, UnsameQ[##] &, All] &, 106] (* Michael De Vlieger, Jan 03 2019 *)
PROG
(PARI)
A322982(n) = if((1==n)||isprime(n), n+n-1, n/vecmin(factor(n)[, 1]));
A087717(n) = { my(visited = Map(), visited_at_step = Map(), j=0, m=0, t); while(!mapisdefined(visited, n), mapput(visited, n, j); mapput(visited_at_step, j, n); j++; n = A322982(n)); for(k=mapget(visited, n), j-1, t = mapget(visited_at_step, k); if(!m || (t<m), m=t)); (m); }; \\ Antti Karttunen, Jan 03 2019
CROSSREFS
Cf. A322982.
Sequence in context: A122553 A157831 A032552 * A053444 A175797 A358475
KEYWORD
nonn
AUTHOR
John W. Layman, Sep 29 2003
EXTENSIONS
Name edited and the term a(1) = 1 prepended by Antti Karttunen, Jan 03 2019
STATUS
approved