login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087654
Decimal expansion of D(1) where D(x) is the Dawson function.
4
5, 3, 8, 0, 7, 9, 5, 0, 6, 9, 1, 2, 7, 6, 8, 4, 1, 9, 1, 3, 6, 3, 8, 7, 4, 2, 0, 4, 0, 7, 5, 5, 6, 7, 5, 4, 7, 9, 1, 9, 7, 5, 0, 0, 1, 7, 5, 3, 9, 3, 3, 3, 1, 8, 8, 7, 5, 2, 1, 9, 0, 9, 8, 0, 0, 2, 5, 6, 6, 5, 0, 3, 3, 3, 0, 5, 2, 7, 1, 0, 6, 2, 9, 7, 2, 6, 0, 8, 6, 1, 5, 0, 2, 7, 4, 3, 0, 8, 0, 9, 3, 8, 8, 9
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Dawson's Integral.
FORMULA
D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - R. J. Mathar, Jul 10 2024
Equals A099288 * sqrt(Pi)/(2e) = A099288 *A019704 * A068985. - R. J. Mathar, Jul 10 2024
EXAMPLE
0.5380795069127684191363874204075567547919750017539...
MATHEMATICA
RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
RealDigits[DawsonF[1], 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
PROG
(PARI) intnum(t=0, 1, exp(t^2))/exp(1) \\ Michel Marcus, Feb 28 2023
CROSSREFS
Sequence in context: A019663 A187488 A372831 * A086032 A018222 A349578
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Sep 25 2003
STATUS
approved