login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087489
Primes p such that 3^p - 2^p is composite.
6
7, 11, 13, 19, 23, 37, 41, 43, 47, 61, 67, 71, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 313, 317
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[100]], CompositeQ[3^#-2^#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2018 *)
PROG
(PARI) apmb(a, b, n) = { forprime(x=2, n, y=a^x-b^x; if(!ispseudoprime(y), print1(x", "); ) ) }
CROSSREFS
Cf. A001047.
Primes p such that k^p - (k-1)^p is composite: this sequence (k=3), A087490 (k=4), A087685 (k=5), A087749 (k=6), A087759 (k=7), A087763 (k=8), A087894 (k=9), A087895 (k=10).
Sequence in context: A165349 A160024 A063911 * A155488 A100350 A084467
KEYWORD
nonn
AUTHOR
Cino Hilliard, Oct 26 2003
EXTENSIONS
Offset corrected by Mohammed Yaseen, Jul 17 2022
STATUS
approved