login
A087254
If we start the Collatz-iteration at these values, each divisible by 4, all subsequent terms in trajectory are smaller than the initial value.
2
4, 8, 20, 24, 32, 48, 56, 68, 72, 80, 84, 96, 104, 116, 128, 132, 144, 152, 168, 176, 180, 192, 200, 212, 224, 228, 240, 260, 264, 272, 276, 288, 296, 308, 312, 320, 324, 336, 344, 356, 360, 368, 372, 384, 392, 404, 408, 416, 452, 456, 464, 468, 480, 488, 512
OFFSET
1,1
COMMENTS
Numbers that are not highest in any Collatz trajectory other than n. - Jayanta Basu, May 27 2013
EXAMPLE
n=104: iteration list = {104,52,26,13,40,20,10,5,16,8,4,2,1}, where initial-value = largest-term.
MATHEMATICA
mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#], #/2, 3#+1] &, n, #>1 &]; t={}; Do[c=i=0; While[c!=1 && ++i<n, If[mcoll[i]==n, c=1]]; If[c==0 && mcoll[n]==n, AppendTo[t, n]], {n, 4, 512, 4}]; t (* Jayanta Basu, May 27 2013 *)
CROSSREFS
Cf. A025586, A087251-A087253, A222562 (with 1 and 2 prepended).
Sequence in context: A178447 A006580 A061814 * A160726 A191483 A062717
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 08 2003
STATUS
approved