OFFSET
2,1
LINKS
Phil Carmody, Bitstrings representing primes in many bases.
Mersenneforum.org, Multibase primes
EXAMPLE
a(5) = 10010111 because 10010111 (base 2) = 151, 10010111 (base 3) = 2281, 10010111 (base 4) = 16661 and 10010111 (base 5) = 78781 are all prime and 10010111 is the smallest such string.
MATHEMATICA
a[n_] := (While[b = FromDigits[ IntegerDigits[k, 2]]; Union[ PrimeQ[ Table[ FromDigits[ IntegerDigits[b], i], {i, 2, n}]]] != {True}, k++ ]; b); k = 1; Do[ Print[ a[n]], {n, 2, 10}]
PROG
(Python)
from sympy import isprime
def conv(s, b): return sum(b**k for k, bk in enumerate(s[::-1]) if bk=='1')
def ok(s, n): return all(isprime(conv(s, b)) for b in range(2, n+1))
def a(n):
if n < 4: return 10
k = 3
while not ok(bin(k)[2:], n): k += 2
return int(bin(k)[2:])
print([a(n) for n in range(2, 9)]) # Michael S. Branicky, Oct 10 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Richard FitzHugh (fitzhughrichard(AT)hotmail.com), Aug 22 2003
EXTENSIONS
Edited by Robert G. Wilson v, Aug 24 2003
a(10) from Phil Carmody's Web site added by Dario Alpern, May 14 2006
a(11) from Phil Carmody's website added by James G. Merickel, Feb 15 2010
a(12) from Jim Viebke on mersenneforum.org added by Andreas Höglund, Oct 17 2022
STATUS
approved