OFFSET
1,2
COMMENTS
By definition, a(n) = Product_{1<=i<j<=n} (r^i - r^j)^2, where r = exp(2*Pi*i/n). As a result we have a(n) = det(M)^2, where M is the n X n matrix M_{jk} = r^(s(j)*t(k)), defined for any permutations {s(1), s(2), ..., s(n)}, {t(1), t(2), ..., t(n)} of {1,2,...n}. - Jianing Song, Mar 17 2021
LINKS
Kenneth G. Hawes, Table of n, a(n) for n = 1..386
Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 249-255. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
FORMULA
a(n) = (-1)^floor((n-1)/2) * n^n = (-1)^floor((n-1)/2) * A000312(n).
PROG
(Sage) def A086783(n) : return (-1)^((n-1)//2) * n^n # Eric M. Schmidt, May 04 2013
(PARI) a(n)=poldisc('x^n-1); \\ Joerg Arndt, May 04 2013
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 03 2003
EXTENSIONS
More terms from Eric M. Schmidt, May 04 2013
STATUS
approved