login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A086695
a(n) = 100^n - 10^n - 1.
1
89, 9899, 998999, 99989999, 9999899999, 999998999999, 99999989999999, 9999999899999999, 999999998999999999, 99999999989999999999, 9999999999899999999999, 999999999998999999999999, 99999999999989999999999999, 9999999999999899999999999999
OFFSET
1,1
COMMENTS
Digits of the inverses of these numbers give the Fibonacci numbers. More precisely, the digits of 1/(10^(2*n)-10^n-1) give the Fibonacci numbers up to 10^n.
More generally, if x_1, x_2, x_n=x_(n-1)-x_(n-2) is any Lucas sequence, then the digits of the numbers (x_1*10^n-(x_1-x_2))/(10^(2*n)-10^n-1) give the x_n up to 10^n.
1/a(n) = Sum_{i>=1} A000045(i-1)/10^(n*i) (see Long paper). - Michel Marcus, May 01 2013
LINKS
C. T. Long, The Decimal Expansion of 1/89 and Related Results, The Fibonacci Quarterly, Volume 19, Number 1, February 1981
FORMULA
a(n) = 10^(2*n) - 10^n - 1.
MATHEMATICA
Table[100^n-10^n-1, {n, 20}] (* or *) LinearRecurrence[{111, -1110, 1000}, {89, 9899, 998999}, 20] (* Harvey P. Dale, Nov 16 2023 *)
PROG
(PARI) a(n)=100^n-10^n-1 \\ Charles R Greathouse IV, May 01 2013
CROSSREFS
Cf. A000045.
Sequence in context: A263431 A093948 A116254 * A056568 A174758 A181681
KEYWORD
easy,nonn
AUTHOR
Maurice Mischler (maurice.mischler(AT)ima.unil.ch), Sep 12 2003
EXTENSIONS
Offset corrected by Jon E. Schoenfield, Jun 17 2018
STATUS
approved