login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086646 Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k). 13
1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1, 2702765, 3334386, 685575, 56364, 2475, 66, 1, 199360981, 245951615, 50571521, 4159155, 183183, 5005, 91, 1, 19391512145, 23923317720, 4919032300, 404572168, 17824950, 488488, 9100, 120, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The elements of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^(n+k)*A086645(n,k). - R. J. Mathar, Mar 14 2013
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (1/E(-y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013
Let P_n be the poset of even size subsets of [2n] ordered by inclusion. Then Sum_{k=0..n}(-1)^(n-k)*T(n,k)*x^k is the characteristic polynomial of P_n. - Geoffrey Critzer, Feb 24 2021
LINKS
W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
FORMULA
cosh(u*t)/cos(t) = Sum_{n>=0} S_2n(u)*(t^(2*n))*(1/(2*n)!). S_2n(u) = Sum_{k>=0} T(n,k)*u^(2*k). Sum_{k>=0} (-1)^k*T(n,k) = 0. Sum_{k>=0} T(n,k) = 2^n*A005647(n); A005647: Salie numbers.
Triangle T(n,k) read by rows; given by [1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Sum_{k=0..n} (-1)^k*T(n,k)*4^(n-k) = A000281(n). - Philippe Deléham, Jan 26 2004
Sum_{k=0..n} T(n,k)*(-4)^k*9^(n-k) = A002438(n+1). - Philippe Deléham, Aug 26 2005
Sum_{k=0..n} (-1)^k*9^(n-k)*T(n,k) = A000436(n). - Philippe Deléham, Oct 27 2006
From Peter Bala, Aug 06 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Generating function: E(x*y)/E(-y) = 1 + (1 + x)*y/2! + (5 + 6*x + x^2)*y^2/4! + (61 + 75*x + 15*x^2 + x^3)*y^3/6! + .... The n-th power of this array has a generating function E(x*y)/E(-y)^n. In particular, the matrix inverse is a signed version of A086645 with a generating function E(-y)*E(x*y).
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} (-1)^(n-k)*binomial(2*n,2*k)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary complex x we have lim_{n -> infinity} R(n,-x^2)/R(n,0) = cos(x*Pi/2). A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,-x) seem to converge to the odd squares 1, 9, 25, ... as n increases. Some numerical examples are given below. Cf. A055133, A091042 and A103364.
R(n,-1) = 0; R(n,-9) = (-1)^n*2*4^n; R(n,-25) = (-1)^n*2*(16^n - 4^n);
R(n,-49) = (-1)^n*2*(36^n - 16^n + 4^n). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
5, 6, 1;
61, 75, 15, 1;
1385, 1708, 350, 28, 1;
50521, 62325, 12810, 1050, 45, 1;
...
From Peter Bala, Aug 06 2013: (Start)
Polynomial | Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,-x) | 1, 9.18062, 13.91597
R(10,-x) | 1, 9.00000, 25.03855, 37.95073
R(15,-x) | 1, 9.00000, 25.00000, 49.00895, 71.83657
R(20,-x) | 1, 9.00000, 25.00000, 49.00000, 81.00205, 114.87399
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
MAPLE
A086646 := proc(n, k)
if k < 0 or k > n then
0 ;
else
A000364(n-k)*binomial(2*n, 2*k) ;
end if;
end proc: # R. J. Mathar, Mar 14 2013
MATHEMATICA
R[0, _] = 1;
R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}];
Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 19 2019 *)
CROSSREFS
Cf. A000281.
Cf. A000795 (row sums).
Cf. A055133, A086645 (unsigned matrix inverse), A103364, A104033.
T(2n,n) give |A214445(n)|.
Sequence in context: A290319 A321630 A086745 * A181612 A216808 A293107
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jul 26 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 03:46 EDT 2024. Contains 374463 sequences. (Running on oeis4.)