login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086375
Number of factors over Q in the factorization of U_n(x) + 1 where U_n(x) is the Chebyshev polynomial of the second kind.
2
1, 2, 2, 3, 2, 4, 3, 3, 3, 6, 2, 4, 4, 5, 4, 5, 2, 7, 4, 4, 4, 8, 3, 4, 5, 6, 4, 8, 2, 8, 4, 3, 6, 9, 4, 5, 4, 8, 4, 8, 2, 8, 6, 4, 6, 10, 3, 6, 5, 7, 4, 8, 4, 10, 6, 4, 4, 12, 2, 6, 6, 7, 8, 7, 4, 8, 4, 8, 4, 14, 2, 5, 6, 6, 8, 8, 4, 12, 5, 4, 5, 12, 4, 6, 6, 8, 4, 12, 4, 10, 6, 4, 6, 12, 4, 6, 6, 10, 6, 9
OFFSET
1,2
EXAMPLE
a(7)=3 because 1+U(7,x)=1+128x^7-192x^5+80x^3-8x=(2x+1)(8x^3-6x+1)(8x^3-4x^2-4x+1).
PROG
(PARI) p2 = 1; p1 = 2*x; for (n = 1, 103, p = 2*x*p1 - p2; f = factor(p1 + 1); print(sum(i = 1, matsize(f)[1], f[i, 2]), " "); p2 = p1; p1 = p); \\ David Wasserman, Mar 02 2005
CROSSREFS
Cf. A086327.
Cf. A086374.
Sequence in context: A337327 A065770 A297113 * A107324 A023522 A366311
KEYWORD
nonn,easy
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 06 2003
EXTENSIONS
More terms from David Wasserman and Emeric Deutsch, Mar 02 2005
STATUS
approved