The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086302 a(n) = 4*n^4 + 24*n^3 + 48*n^2 + 36*n + 8. 4
8, 120, 528, 1520, 3480, 6888, 12320, 20448, 32040, 47960, 69168, 96720, 131768, 175560, 229440, 294848, 373320, 466488, 576080, 703920, 851928, 1022120, 1216608, 1437600, 1687400, 1968408, 2283120, 2634128, 3024120, 3455880, 3932288, 4456320, 5031048 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Suppose one wishes to find sets of four positive integers (a,b,c,d) such that ab+1, ac+1, ad+1, bc+1, bd+1, cd+1 are perfect squares. Then one may take a = 1, b = x^2 + 2x, c = x^2 + 4x + 3, d = 4x^4 + 24x^3 + 48x^2 + 36x + 8.
LINKS
Philip Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.
Eric Weisstein's World of Mathematics, Diophantus Property.
FORMULA
a(n) = A057769(n+1) + 1. - N. J. A. Sloane, Jun 12 2004
G.f.: 8*(1 + 10*x + x^2)/(1 - x)^5. - Colin Barker, Mar 26 2012
a(n) = 4 * (n+1) * (n+2) * (n^2 + 3*n + 1). - Bruno Berselli, Mar 26 2012
a(n) = 8*A062392(n+1). - Bruce J. Nicholson, Jun 05 2017
Sum_{n>=0} 1/a(n) = tan(sqrt(5)*Pi/2)*Pi/(4*sqrt(5)). - Amiram Eldar, Jan 22 2024
EXAMPLE
(a,b,c,d) = (1,3,8,120), (1,8,15,528), (1,15,24,1520), (1,24,35,3480), ...
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {8, 120, 528, 1520, 3480}, 50] (* or *)
A086302[n_] := 4 (n + 1) (n + 2) (n^2 + 3 n + 1);
Array[A086302, 50, 0] (* Paolo Xausa, Jan 16 2024 *)
CROSSREFS
Sequence in context: A228752 A360978 A116008 * A053129 A249641 A045899
KEYWORD
nonn,easy
AUTHOR
Neven Juric (neven.juric(AT)apis-it.hr), Aug 29 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)