login
A086271
Rectangular array T(n,k) of polygonal numbers, by descending antidiagonals.
9
1, 1, 3, 1, 4, 6, 1, 5, 9, 10, 1, 6, 12, 16, 15, 1, 7, 15, 22, 25, 21, 1, 8, 18, 28, 35, 36, 28, 1, 9, 21, 34, 45, 51, 49, 36, 1, 10, 24, 40, 55, 66, 70, 64, 45, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66, 1, 13, 33, 58, 85, 111, 133, 148, 153, 145, 121, 78
OFFSET
1,3
COMMENTS
The transpose of the array in A086270; diagonal sums 1, 4, 11, 25, 50, ... are the numbers A006522(n) for n >= 3.
LINKS
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
FORMULA
T(n, k) = k*C(n,2) + n.
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: x*y*(1 - y + x*y)/((1 - x)^3*(1 - y)^2).
G.f. of n-th row: n*(1 + n - 2*y)*y/(2*(1 - y)^2). (End)
EXAMPLE
Columns 1,2,3 are the triangular, square and pentagonal numbers.
Northwest corner:
k=1 k=2 k=3 k=4 k=5
n=1: 1 1 1 1 1 ...
n=2: 3 4 5 6 7 ...
n=3: 6 9 12 15 18 ...
n=4: 10 16 22 28 34 ...
n=5: 15 25 35 45 55 ...
...
MATHEMATICA
T[n_, k_] := PolygonalNumber[k+2, n]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 04 2016 *)
CROSSREFS
Main diagonal gives A006000(n-1).
Sequence in context: A194540 A351153 A193043 * A345229 A080851 A209518
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, Jul 14 2003
STATUS
approved