|
|
A086257
|
|
Number of primitive prime factors of 2^n+1.
|
|
6
|
|
|
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 1, 1, 2, 2, 1, 2, 1, 4, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 3, 3, 4, 1, 2, 3, 4, 5, 2, 1, 4, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 4, 3, 2, 4, 1, 4, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,15
|
|
COMMENTS
|
A prime factor of 2^n+1 is called primitive if it does not divide 2^r+1 for any r<n. Zsigmondy's theorem says that there is at least one primitive prime factor except for n=3. See A086258 for those n that have a record number of primitive prime factors.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(14) = 2 because 2^14+1 = 5*29*113 and 29 and 113 do not divide 2^r+1 for r < 14.
|
|
MATHEMATICA
|
nMax=200; pLst={}; Table[f=Transpose[FactorInteger[2^n+1]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 0, nMax}]
|
|
CROSSREFS
|
Excluding a(0) = 1, forms a bisection of A086251.
Cf. A046799 (number of distinct prime factors of 2^n+1), A054992 (number of prime factors, with repetition, of 2^n+1), A086258.
|
|
KEYWORD
|
hard,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|