login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086253
Decimal expansion of Feller's alpha coin-tossing constant.
3
1, 0, 8, 7, 3, 7, 8, 0, 2, 5, 3, 8, 4, 1, 5, 2, 7, 2, 3, 1, 4, 1, 7, 1, 1, 9, 4, 3, 6, 0, 3, 4, 9, 5, 9, 7, 3, 0, 5, 0, 4, 0, 6, 5, 9, 5, 3, 0, 1, 9, 6, 7, 8, 7, 0, 4, 8, 1, 6, 0, 8, 0, 7, 5, 6, 6, 2, 3, 3, 7, 3, 4, 7, 8, 5, 5, 9, 4, 7, 7, 3, 2, 9, 7, 0, 3, 1, 5, 8, 2, 9, 1, 5, 2, 1, 1, 8, 2, 5, 0, 9, 2
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.11 Feller's coin tossing constants, p. 339.
LINKS
Eric Weisstein's World of Mathematics, Run
FORMULA
Equals -2/3 - 4/(3*(17 + 3*sqrt(33))^(1/3)) + 2*(17 + 3*sqrt(33))^(1/3)/3. - Vaclav Kotesovec, Oct 14 2018
Positive real root of x^3 + 2*x^2 + 4*x - 8. - Peter Luschny, Oct 14 2018
Equals 2/A058265 = 2*A192918. - Jon Maiga, Nov 24 2018
EXAMPLE
1.0873780253841527231417119436....
MAPLE
evalf[120](solve(x^3+2*x^2+4*x-8=0, x)[1]); # Muniru A Asiru, Nov 25 2018
MATHEMATICA
alpha = Root[1-x+(x/2)^4, x, 1]; RealDigits[alpha, 10, 102] // First (* Jean-François Alcover, Jun 03 2014 *)
PROG
(PARI) solve(x=1, 3/2, 1-x+(x/2)^4) \\ Michel Marcus, Oct 14 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 13 2003
STATUS
approved