%I #12 Apr 15 2024 09:48:36
%S 1,2,10,19,20,24,26,38,42,57,62,75,78,83,87,91,100,109,119,122,127,
%T 138,157,172,175,178,183,187,190,191,200,204,206,212,217,221,239,240,
%U 260,271,293,308,318,329,337,355,359,373,377,380,381,388,392,395,402,420
%N Numbers k such that the number resulting from sorting the digits of k in ascending order + the sum of the squares of the digits of k is a palindrome. Or, sortdigits(k) + digitsumsquare(k) is a palindrome.
%H Harvey P. Dale, <a href="/A085936/b085936.txt">Table of n, a(n) for n = 1..1000</a>
%e 91 is a term because 91 sorted is 19 and the sum of the squares of the digits of 19 = 1^2 + 9^2 = 82 and 19 + 82 = 101, a palindrome.
%t dsQ[n_]:=Module[{sd=FromDigits[Sort[IntegerDigits[n]]],ds=Total[ IntegerDigits[n]^2],idc}, idc=IntegerDigits[sd+ds];idc==Reverse[idc]]; Select[Range[500],dsQ] (* _Harvey P. Dale_, Nov 06 2013 *)
%Y Cf. A085937.
%K base,easy,nonn
%O 1,2
%A _Jason Earls_ and _Amarnath Murthy_, Jul 14 2003
%E Corrected by _T. D. Noe_, Oct 25 2006
%E Name clarified by _Jon E. Schoenfield_, Apr 14 2024