|
|
A085936
|
|
Numbers n such that the digits sorted in ascending order + the sum of the squares of the digits of n is a palindrome. Or, sortdigits(n)+digitsumsquare(n) is a palindrome.
|
|
2
|
|
|
1, 2, 10, 19, 20, 24, 26, 38, 42, 57, 62, 75, 78, 83, 87, 91, 100, 109, 119, 122, 127, 138, 157, 172, 175, 178, 183, 187, 190, 191, 200, 204, 206, 212, 217, 221, 239, 240, 260, 271, 293, 308, 318, 329, 337, 355, 359, 373, 377, 380, 381, 388, 392, 395, 402, 420
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
a(16)=91 because 91 sorted is 19 and the sum of the squares of the digits of 19 = 1^2 + 9^2= 82 and 19+82=101, a palindrome.
|
|
MATHEMATICA
|
dsQ[n_]:=Module[{sd=FromDigits[Sort[IntegerDigits[n]]], ds=Total[ IntegerDigits[n]^2], idc}, idc=IntegerDigits[sd+ds]; idc==Reverse[idc]]; Select[Range[500], dsQ] (* Harvey P. Dale, Nov 06 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|