login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085927
a(n) is the digitwise absolute difference between the n-th palindrome and its 9's complement.
1
7, 5, 3, 1, 1, 3, 5, 7, 9, 77, 55, 33, 11, 11, 33, 55, 77, 99, 797, 777, 757, 737, 717, 717, 737, 757, 777, 797, 595, 575, 555, 535, 515, 515, 535, 555, 575, 595, 393, 373, 353, 333, 313, 313, 333, 353, 373, 393, 191, 171, 151, 131, 111, 111, 131, 151, 171, 191
OFFSET
1,1
LINKS
EXAMPLE
a(24) = 717 because A002113(24) = 151 and A061601(151) = 848. 8-1 = 7 and 5-4 = 1, thus 717.
PROG
(Python)
from sympy import isprime
from itertools import count, product
def f(s): return int("".join(str(abs(9 - 2*int(c))) for c in s))
def pals(base=10): # all (nonzero) palindromes as strings
digits = "".join(str(i) for i in range(base))
for d in count(1):
for p in product(digits, repeat=d//2):
if d > 1 and p[0] == "0": continue
left = "".join(p); right = left[::-1]
for mid in [[""], digits][d%2]:
t = left + mid + right
if t != '0': yield t
def aupton(nn): p = pals(); return [f(next(p)) for i in range(nn)]
print(aupton(58)) # Michael S. Branicky, Jul 05 2021
(Python)
def A085927(n):
y = 10*(x:=10**(len(str(n+1>>1))-1))
m = str((c:=n+1-x)*x+int(str(c)[-2::-1] or 0) if n+1<x+y else (c:=n+1-y)*y+int(str(c)[::-1] or 0))
return int(''.join('9753113579'[int(d)] for d in m)) # Chai Wah Wu, Jul 24 2024
CROSSREFS
Sequence in context: A199794 A106040 A320158 * A180597 A219242 A330920
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy and Jason Earls, Jul 13 2003
EXTENSIONS
Edited and extended by David Wasserman, Feb 11 2005
STATUS
approved