login
A085424
Number of ones in the symmetric signed digit expansion of n with q=2 (i.e., the representation of n in the (-1,0,1)_2 number system).
1
1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 4, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,5
LINKS
Wieb Bosma, Signed bits and fast exponentiation, J. Th. Nombres de Bordeaux, 13 no. 1 (2001), p. 27-41.
C. Heuberger and H. Prodinger, On minimal expansions in redundant number systems: Algorithms and quantitative analysis, Computing 66(2001), 377-393.
PROG
(PARI) ep(r, n)=local(t=n/2^(r+2)); floor(t+5/6)-floor(t+4/6)-floor(t+2/6)+floor(t+1/6);
a(n)=sum(r=0, log(3*n)\log(2)-1, (ep(r, n) == 1)) ;
CROSSREFS
Cf. A005578, A085423, A007302 (nonzeros), A057526 (0's), A085425 (-1's).
Sequence in context: A358260 A368978 A255326 * A088737 A318434 A321455
KEYWORD
nonn,easy,base
AUTHOR
Ralf Stephan, Jun 30 2003
STATUS
approved