login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number a(n) == 1 (mod n) such that the prime signature of n and a(n) is the same.
6

%I #13 Jun 14 2022 12:13:57

%S 3,7,9,11,55,29,4913,289,21,23,325,53,15,46,81,103,325,191,261,22,111,

%T 47,3625,10201,183,6859,477,59,1771,311,8587340257,34,35,106,1225,149,

%U 39,118,1161,83,715,173,45,316,93,283,60625,9409,801,205,261,107,11125

%N Smallest number a(n) == 1 (mod n) such that the prime signature of n and a(n) is the same.

%H Robert Israel, <a href="/A085074/b085074.txt">Table of n, a(n) for n = 2..719</a>

%e a(6) = 55 = 9*6 +1 = 11*5 and 6 = 2*3 are both of prime signature p*q, where p and q are primes.

%p f:= proc(n) local k, s, p, best, q, r, x;

%p s:= ps(n);

%p if nops(s) = 1 then

%p s:= s[1]; p:= 1; do p:= nextprime(p); if p^s mod n = 1 then return p^s fi od

%p elif nops(s) = 2 then

%p p:= 1; best:= infinity;

%p do

%p p:=nextprime(p);

%p if n mod p = 0 then next fi;

%p if 2^s[1]*p^s[2] > best then return best fi;

%p if [msolve(x^s[1]*p^s[2]=1, n)]=[] then next fi;

%p q:= 1;

%p do

%p q:= nextprime(q);

%p if q = p or n mod q = 0 then next fi;

%p r:= q^s[1]*p^s[2];

%p if r > best then break fi;

%p if r mod n = 1 then best:= r fi;

%p od

%p od

%p fi;

%p for k from 1 by n do if ps(k) = s then return k fi od

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Mar 23 2021

%o (PARI) a(n) = my(ps = vecsort(factor(n)[, 2]), k = 1); while (vecsort(factor(k*n+1)[, 2]) != ps, k++); return (k*n+1); \\ _Michel Marcus_, Sep 15 2013; corrected Jun 14 2022

%Y Second column of A113031.

%K nonn

%O 2,1

%A _Amarnath Murthy_, Jul 01 2003

%E More terms from _David Wasserman_, Jan 12 2005