login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085074
Smallest number a(n) == 1 (mod n) such that the prime signature of n and a(n) is the same.
6
3, 7, 9, 11, 55, 29, 4913, 289, 21, 23, 325, 53, 15, 46, 81, 103, 325, 191, 261, 22, 111, 47, 3625, 10201, 183, 6859, 477, 59, 1771, 311, 8587340257, 34, 35, 106, 1225, 149, 39, 118, 1161, 83, 715, 173, 45, 316, 93, 283, 60625, 9409, 801, 205, 261, 107, 11125
OFFSET
2,1
LINKS
EXAMPLE
a(6) = 55 = 9*6 +1 = 11*5 and 6 = 2*3 are both of prime signature p*q, where p and q are primes.
MAPLE
f:= proc(n) local k, s, p, best, q, r, x;
s:= ps(n);
if nops(s) = 1 then
s:= s[1]; p:= 1; do p:= nextprime(p); if p^s mod n = 1 then return p^s fi od
elif nops(s) = 2 then
p:= 1; best:= infinity;
do
p:=nextprime(p);
if n mod p = 0 then next fi;
if 2^s[1]*p^s[2] > best then return best fi;
if [msolve(x^s[1]*p^s[2]=1, n)]=[] then next fi;
q:= 1;
do
q:= nextprime(q);
if q = p or n mod q = 0 then next fi;
r:= q^s[1]*p^s[2];
if r > best then break fi;
if r mod n = 1 then best:= r fi;
od
od
fi;
for k from 1 by n do if ps(k) = s then return k fi od
end proc:
map(f, [$1..100]); # Robert Israel, Mar 23 2021
PROG
(PARI) a(n) = my(ps = vecsort(factor(n)[, 2]), k = 1); while (vecsort(factor(k*n+1)[, 2]) != ps, k++); return (k*n+1); \\ Michel Marcus, Sep 15 2013; corrected Jun 14 2022
CROSSREFS
Second column of A113031.
Sequence in context: A338712 A263926 A114788 * A175637 A110404 A366529
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 01 2003
EXTENSIONS
More terms from David Wasserman, Jan 12 2005
STATUS
approved