|
|
A084830
|
|
Numbers n such that (n!)^2 + n! - 1 is prime.
|
|
0
|
|
|
2, 3, 4, 5, 6, 14, 17, 50, 111, 254, 506
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987).
|
|
LINKS
|
Table of n, a(n) for n=1..11.
Dorin Andrica, George C. Ţurkaş, An elliptic Diophantine equation from the study of partitions, Stud. Univ. Babeş-Bolyai Math. (2019) Vol. 64, No. 3, 349-356.
|
|
EXAMPLE
|
5 is in the sequence because (5!)^2+5!-1=14519 is prime.
|
|
MATHEMATICA
|
Do[If[PrimeQ[n!^2+n!-1], Print[n]], {n, 600}]
|
|
CROSSREFS
|
Cf. A002981, A002982.
Sequence in context: A039016 A249102 A250047 * A116044 A116027 A085157
Adjacent sequences: A084827 A084828 A084829 * A084831 A084832 A084833
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Farideh Firoozbakht, Jul 12 2003
|
|
STATUS
|
approved
|
|
|
|