

A083953


Least integer coefficients of A(x), where 1<=a(n)<=3, such that A(x)^(1/3) consists entirely of integer coefficients.


23



1, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. Is this sequence periodic?


LINKS

Robert G. Wilson v, Table of n, a(n) for n = 0..5000.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of nth Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 17321745.


FORMULA

a(k)=1 at k=0, 3, 12, 21, 51, 57, 60, 63, 66, ...; a(k)=2 at k=15, 18, 24, 30, 39, 42, 48, 54, ...


MATHEMATICA

a[0]=1; a[n_] :=a[n] = Block[{k=1, s=Sum[a[i]*x^i, {i, 0, n1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/3), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v, Jul 25 2005 *)


CROSSREFS

Cf. A083952, A083954, A083945, A083946.
Sequence in context: A278265 A171369 A111629 * A066400 A125562 A092040
Adjacent sequences: A083950 A083951 A083952 * A083954 A083955 A083956


KEYWORD

nonn


AUTHOR

Paul D. Hanna, May 09 2003


EXTENSIONS

More terms from Robert G. Wilson v, Jul 25 2005


STATUS

approved



