Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Mar 30 2012 18:39:18
%S 1,2,1,2,1,1,2,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,1,2,1,2,1,1,2,1,2,1,2,
%T 1,2,1,2,1,1,2,1,2,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,2,1,1,2,1,2,1,
%U 2,1,1,2,1,2,1,1,2,1,2,1,2,1,2,1,2,1,1,2,1,2,1,2,1,2,1,1,2,1,2,1,1,2,1,2,1
%N Start with (1,2) and then concatenate 2^n+1 previous terms, n>=0 and add 2 if a(2^n+1)=1 or add 1 if a(2^n+1)=2.
%e The first 2^2+1 = 5 terms are 1,2,1,2,1. Concatenate those 5 terms gives 1,2,1,2,1,1,2,1,2,1; the last term a(5) is 1 hence we add 2 and 2^3+1 first terms are 1,2,1,2,1,1,2,1,2,1,2
%Y Cf. A083922 (partial sums).
%K nonn
%O 1,2
%A _Benoit Cloitre_, May 09 2003