OFFSET
0,2
COMMENTS
There are A033638(n) values in the n-th row, compliant with the order of the polynomial.
In the example for n=6 detailed below, the orders of [6, k]_q are 1, 6, 9, 10, 9, 6, 1 for k = 0..6,
the maximum order 10 defining the row length.
Note that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028.
The rows are formed by the nonzero entries of the columns of A049597.
The coefficient of q^j in the Gaussian polynomial [n, m]_q is the number of binary words on alphabet {0,1} of length n having m 1's and j inversions. Hence T(n, k) is the number of length n binary words with exactly k inversions. - Geoffrey Critzer, May 14 2017
If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017
REFERENCES
George E. Andrews, 'Theory of Partitions', 1976, page 242.
LINKS
Seiichi Manyama, Rows n = 0..48, flattened
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Alexander Gruber, "The Egg:" Bizarre behavior of the roots of a family of polynomials Mathematics StackExchange Oct 04 2012
MathOverflow, Partition numbers and Gaussian binomial coefficient
Eric Weisstein, q-Binomial Coefficient, Mathworld.
Wikipedia, q-binomial
FORMULA
T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
For n >= k, T(n+1,k) = T(n, k) + A000041(k). - Geoffrey Critzer, Feb 12 2021
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A060546(n). - G. C. Greubel, Feb 13 2024
From Mikhail Kurkov, Feb 14 2024: (Start)
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n + 2) - ceiling(sqrt(4*n))).
Both results were proved (see MathOverflow link for details). (End)
From G. C. Greubel, Feb 17 2024: (Start)
T(n, floor(n^2/4)) = A000034(n).
Sum_{k=0..floor(n^2/4}} (-1)^k*T(n, k) = A016116(n+1).
EXAMPLE
When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
MAPLE
QBinomial := proc(n, m, q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)), i=0..m-1) ) ; expand(%) ; end:
A083906 := proc(n, k) add( QBinomial(n, m, q), m=0..n ) ; coeftayl(%, q=0, k) ; end:
for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d, ", A083906(n, k)) ; od: od: # R. J. Mathar, May 28 2009
T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8); # Peter Luschny, Feb 16 2024
MATHEMATICA
Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]], q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
PROG
(PARI) {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 100);
qBinom:= func< n, k, x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
A083906:= func< n, k | Coefficient(R!((&+[qBinom(n, k, x): k in [0..n]]) ), k) >;
[A083906(n, k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
(SageMath)
def T(n, k): # T = A083906
if k<0 or k> (n^2//4): return 0
elif n<2 : return n+1
else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
flatten([[T(n, k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alford Arnold, Jun 19 2003
EXTENSIONS
Edited by R. J. Mathar, May 28 2009
New name using a comment from Geoffrey Critzer by Peter Luschny, Feb 17 2024
STATUS
approved