login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083752
Minimal k > n such that (4k+3n)(4n+3k) is a square.
4
393, 786, 1179, 109, 1965, 2358, 2751, 218, 3537, 3930, 4323, 327, 132, 5502, 5895, 436, 6681, 7074, 7467, 545, 8253, 8646, 9039, 157, 9825, 264, 10611, 763, 11397, 11790, 12183, 872, 481, 13362, 13755, 981, 184, 14934, 396, 1090, 16113, 16506, 16899, 1199
OFFSET
1,1
COMMENTS
A problem of elementary geometry lead to the search for squares of the form (4*a^2+3*b^2)(4*b^2+3*a^2). I could not find any such squares except when a=b. See link to ZS.
Letting j := 24k+25n in (4k+3n)(4n+3k)=x^2 yields the Pell-like equation j^2 - 48 x^2 = 49 n^2. The recurrence relationship for solutions to Pell equations implies that if k,x is a solution for n, then so is k1=18817k+19600n-5432x, x1=18817x-65184k-67900n. As a result, if there is a solution with 109/4n < k < 393n, then there is also one with n < k < 109/4n, so either n < a(n) <= 109/4n or a(n)=393n. - David Applegate, Jan 09 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Zak Seidov, Two "triangles" in a right triangle [Cached copy, pdf file, with permission]
FORMULA
(4a(n)+3n)(4n+3a(n)) is a square.
n < a(n) <= 393n. - Charles R Greathouse IV, Dec 13 2013
EXAMPLE
a(24)=157 because (4*157+3*24)(3*157+4*24)= 396900=630*630.
MAPLE
a:= proc(n) local k; for k from n+1
while not issqr((4*k+3*n)*(4*n+3*k)) do od; k
end:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 13 2013
MATHEMATICA
a[n_] := For[k = n + 1, True, k++, If[IntegerQ[Sqrt[(4k+3n)(4n+3k)]], Return[k]]]; Table[an = a[n]; Print[an]; an, {n, 1, 50}] (* Jean-François Alcover, Oct 31 2016 *)
PROG
(PARI) a(n)=my(k=n+1); while(!issquare((4*k+3*n)*(4*n+3*k)), k++); k \\ Charles R Greathouse IV, Dec 13 2013
(PARI) diff(v)=vector(#v-1, i, v[i+1]-v[i])
a(n)=my(v=select(k->issquare(12*Mod(k, n)^2), [0..n-1])); forstep(k=n+v[1], 393*n, diff(concat(v, n)), if(issquare((4*k+3*n)*(4*n+3*k)) && k>n, return(k))) \\ Charles R Greathouse IV, Dec 13 2013
(PARI) a(n)=for(k=n+1, 109*n\4, if(issquare((4*k+3*n)*(4*n+3*k)), return(k))); 393*n \\ Charles R Greathouse IV, Jan 09 2014
(Sage)
def a(n):
k = n + 1
while not is_square((4*k+3*n)*(4*n+3*k)):
k += 1
return k
[a(n) for n in (1..44)] # Peter Luschny, Jun 25 2014
(Haskell)
a083752 n = head [k | k <- [n+1..], a010052 (12*(k+n)^2 + k*n) == 1]
-- Reinhard Zumkeller, Apr 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 17 2003
EXTENSIONS
a(12) corrected by Charles R Greathouse IV, Dec 13 2013
STATUS
approved