The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083589 Expansion of 1/((1-4*x)*(1-x^4)). 4
 1, 4, 16, 64, 257, 1028, 4112, 16448, 65793, 263172, 1052688, 4210752, 16843009, 67372036, 269488144, 1077952576, 4311810305, 17247241220, 68988964880, 275955859520, 1103823438081, 4415293752324, 17661175009296, 70644700037184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,0,0,1,-4) FORMULA a(0)=1, a(n) = 4*a(n-1) if n is not a multiple of 4, otherwise a(n) = 4*a(n-1) + 1. - Vincenzo Librandi, Mar 19 2011 a(n) = 4^(n+4)/255 -1/12 +(-1)^n/20 +(-1)^floor(n/2)*A010685(n)/34. - R. J. Mathar, Mar 19 2011 a(0)=1, a(1)=4, a(2)=16, a(3)=64, a(4)=257, a(n) = 4*a(n-1) + a(n-4) - 4*a(n-5). - Harvey P. Dale, Sep 13 2011 a(n) = floor(64*(2^(2*(n+1))+1)/255). - Tani Akinari, Jul 09 2013 MATHEMATICA CoefficientList[Series[1/((1-4x)(1-x^4)), {x, 0, 30}], x] (* or *) LinearRecurrence[ {4, 0, 0, 1, -4}, {1, 4, 16, 64, 257}, 31] (* Harvey P. Dale, Sep 13 2011 0) PROG (PARI) a(n)=(4^(n+4)+64)\255 \\ Charles R Greathouse IV, Jul 09 2013 CROSSREFS Cf. A033139, A000975. Sequence in context: A083592 A069029 A238940 * A098590 A270560 A071357 Adjacent sequences:  A083586 A083587 A083588 * A083590 A083591 A083592 KEYWORD easy,nonn AUTHOR Paul Barry, May 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:24 EST 2020. Contains 338858 sequences. (Running on oeis4.)