login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083589
Expansion of 1/((1-4*x)*(1-x^4)).
4
1, 4, 16, 64, 257, 1028, 4112, 16448, 65793, 263172, 1052688, 4210752, 16843009, 67372036, 269488144, 1077952576, 4311810305, 17247241220, 68988964880, 275955859520, 1103823438081, 4415293752324, 17661175009296, 70644700037184
OFFSET
0,2
FORMULA
a(0)=1, a(n) = 4*a(n-1) if n is not a multiple of 4, otherwise a(n) = 4*a(n-1) + 1. - Vincenzo Librandi, Mar 19 2011
a(n) = 4^(n+4)/255 -1/12 +(-1)^n/20 +(-1)^floor(n/2)*A010685(n)/34. - R. J. Mathar, Mar 19 2011
a(0)=1, a(1)=4, a(2)=16, a(3)=64, a(4)=257, a(n) = 4*a(n-1) + a(n-4) - 4*a(n-5). - Harvey P. Dale, Sep 13 2011
a(n) = floor(64*(2^(2*(n+1))+1)/255). - Tani Akinari, Jul 09 2013
MATHEMATICA
CoefficientList[Series[1/((1-4x)(1-x^4)), {x, 0, 30}], x] (* or *) LinearRecurrence[ {4, 0, 0, 1, -4}, {1, 4, 16, 64, 257}, 31] (* Harvey P. Dale, Sep 13 2011 *)
PROG
(PARI) a(n)=(4^(n+4)+64)\255 \\ Charles R Greathouse IV, Jul 09 2013
CROSSREFS
Sequence in context: A083592 A069029 A238940 * A098590 A270560 A071357
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 02 2003
STATUS
approved